iTRAQ-Based Proteomic Analysis of Ginsenoside F2 on Human Gastric Carcinoma Cells SGC7901

نویسندگان

  • Qian Mao
  • Pin-Hu Zhang
  • Jie Yang
  • Jin-Di Xu
  • Ming Kong
  • Hong Shen
  • He Zhu
  • Min Bai
  • Li Zhou
  • Guang-Fu Li
  • Qiang Wang
  • Song-Lin Li
چکیده

Ginsenoside F2 (F2), a protopanaxdiol type of saponin, was reported to inhibit human gastric cancer cells SGC7901. To better understand the molecular mechanisms of F2, an iTRAQ-based proteomics approach was applied to define protein expression profiles in SGC7901 cells in response to lower dose (20 μM) and shorter duration (12 hour) of F2 treatment, compared with previous study. 205 proteins were screened in terms of the change in their expression level which met our predefined criteria. Further bioinformatics and experiments demonstrated that F2 treatment downregulated PRR5 and RPS15 and upregulated RPL26, which are implicated in ribosomal protein-p53 signaling pathway. F2 also inhibited CISD2, Bcl-xl, and NLRX1, which are associated with autophagic pathway. Furthermore, it was demonstrated that F2 treatment increased Atg5, Atg7, Atg10, and PUMA, the critical downstream effectors of ribosomal protein-p53 signaling pathway, and Beclin-1, UVRAG, and AMBRA-1, the important molecules in Bcl-xl/Beclin-1 pathway. The 6 differentially abundant proteins, PRR5, CISD2, Bcl-xl, NLRX1, RPS15, and RPL26, were confirmed by western blot. Taken together, ribosomal protein-p53 signaling pathway and Bcl-xl/Beclin-1 pathway might be the most significantly regulated biological process by F2 treatment in SGC7901 cells, which provided valuable insights into the deep understanding of the molecular mechanisms of F2 for gastric cancer treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

iTRAQ Quantitative Analysis of Multidrug Resistance Mechanisms in Human Gastric Cancer Cells

Multidrug resistance (MDR) is a major obstacle towards a successful treatment of gastric cancer. However, the mechanisms of MDR are intricate and have not been fully understood. To elucidate the molecular mechanisms of MDR in gastric cancer, we employed the proteomic approach of isobaric tags for relative and absolute quantification (iTRAQ), followed by LC-MS/MS, using the vincristine-resistant...

متن کامل

TGF-β1 promotes human gastric carcinoma SGC7901 cells invasion by inducing autophagy.

OBJECTIVE To investigate the role of TGF-b1 in autophagy and invasion ability in human gastric carcinoma cell line SGC7901. MATERIALS AND METHODS Cultured SGC7901 cells were treated with different concentrations of TGF-b1 for 24 h. The protein expression levels of autophagy relative marker LC3 and Beclin1 were detected by Western blot. The effect of TGF-b1 on invasion ability of SGC7901 cells...

متن کامل

In vitro anti-proliferative activity of clove extract on human gastric carcinoma

Background and objectives: Cancer cell resistance to common chemotherapy agents is on rise. Plants are considered valuable sources of herbal drugs for cancer therapy. The present study was conducted to investigate the in vitro antioxidant, anti-proliferative, and apoptosis-inducing properties of clove (Syzygium aromaticum L.) extract in human gastric carcinoma...

متن کامل

Aspirin suppresses growth of human gastric carcinoma cell by inhibiting survivin expression☆

Regular use of aspirin (ASA) could reduce the risk of gastric cancer although the precise mechanism remains unclear. Down-regulation of survivin may be one of the cyclooxygenase-independent mechanisms whereby ASA induces apoptosis of gastric cancer cell. In this study, we investigated the effect of ASA on the growth, apoptosis and survivin expression of gastric cancer cell line SGC7901. The sur...

متن کامل

Biotransformation of ginsenoside Rb1 via the gypenoside pathway by human gut bacteria

BACKGROUND Bacterial conversion of ginsenosides is crucial for the health-promoting effects of ginsenosides. Previous studies on the biotransformation of ginsenoside Rb1 (Rb1) by gut bacteria have focused on the ginsenoside Rd (Rd) pathway (Rb1 → Rd → ginsenoside F2 (F2) → compound K (Cpd K)). This study aims to examine the gypenoside pathway in human gut bacteria in vitro. METHODS The metabo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016